Praziquantel Synergistically Enhances Paclitaxel Efficacy to Inhibit Cancer Cell Growth
نویسندگان
چکیده
The major challenges we are facing in cancer therapy with paclitaxel (PTX) are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ), an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.
منابع مشابه
Quercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line
Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer ac...
متن کاملMethylseleninic Acid Enhances Paclitaxel Efficacy for the Treatment of Triple-Negative Breast Cancer
A major challenge in breast cancer therapy is the lack of an effective therapeutic option for a particularly aggressive subtype of breast cancer, triple-negative breast cancer. Here we provide the first preclinical evidence that a second-generation selenium compound, methylseleninic acid, significantly enhances the anticancer efficacy of paclitaxel in triple-negative breast cancer. Through comb...
متن کاملRas Isoprenylation and pAkt Inhibition by Zoledronic Acid and Fluvastatin Enhances Paclitaxel Activity in T24 Bladder Cancer Cells
BACKGROUND Bisphosphonates interfere with the mevalonate pathway and inhibit the prenylation of small GTP-binding proteins such as ras and rap. We hypothesized that zoledronic acid would synergistically inhibit T24 bladder cancer cell growth in combination with fluvastatin and paclitaxel. METHODS Increasing doses of fluvastatin, zoledronic acid, and paclitaxel were investigated as single agen...
متن کاملSynergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells.
Discodermolide is a new microtubule-targeted antimitotic drug in Phase I clinical trials that, like paclitaxel, stabilizes microtubule dynamics and enhances microtubule polymer mass in vitro and in cells. Despite their apparently similar binding sites on microtubules, discodermolide acts synergistically with paclitaxel to inhibit proliferation of A549 human lung cancer cells (L. Martello et al....
متن کاملCarcinoma Cells Discodermolide and Paclitaxel in Non-Small Cell Lung Synergistic Suppression of Microtubule Dynamics by Updated Version
Discodermolide is a new microtubule-targeted antimitotic drug in Phase I clinical trials that, like paclitaxel, stabilizes microtubule dynamics and enhances microtubule polymer mass in vitro and in cells. Despite their apparently similar binding sites on microtubules, discodermolide acts synergistically with paclitaxel to inhibit proliferation of A549 human lung cancer cells (L. Martello et al....
متن کامل